

Microturbine Developments at

GE

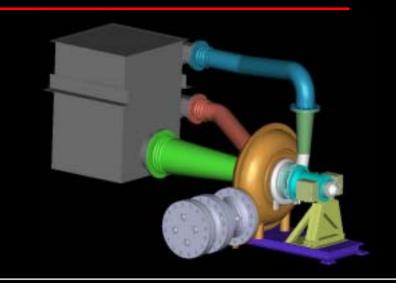
Advanced Integrated Microturbine System

Karl Sheldon Project Leader

Distributed Energy Peer Review December 3rd, 2003

- Project Overview
- Conceptual Design
- Component & System Design
- Fabrication
- Integration
- Ceramic Activities
- Summary

Project Overview


OBJECTIVE

- Next generation microturbine system
- Improve efficiency, cost, and emissions
- Current and emerging distributed generation markets
 - Fuel Cell Bottoming Cycle
 - Combined Heating, Cooling and Power Systems
 - Opportunistic Fuel Utilization

CTQ'S

- 35% Efficient Design w/ Growth to 40%
- 175 kW Output with growth to +250 kW
- ≤ 10 ppm NOx on Natural Gas ✓
- ≤ 10 ppm CO on Natural Gas ✓
- ≤ \$500/kW unit cost
- 11,000 hour maintenance interval
- 45,000 hour life

	Scheduled	
Program Milestone	Completion Date	Status
Market Study	Dec-00	Complete
Conceptual Design	Apr-01	Complete
Component Design		Complete
System Design	May-03	Complete
Component Fabrication	Aug-03	Delayed
System Integration	Oct-03	Delayed
Laboratory Evaluation	Jan-04	Planned
Final Business Plan	Mar-04	Planned
Demonstration	Sep-04	Planned

PROJECT TEAM

GE Global Research (Niskayuna, Bangalore, Shanghai)

GE Power Systems (GEPS)

GE Industrial Systems (GEIS)

PCC, Port City Machine & Tool, Turbo Genset Company Kyocera Industrial Ceramics Corp.

Oak Ridge National Laboratory

PROJECT STATUS - Red/Yellow/Green

Status

Vendors Dependent Tasks

Yellow

PATENTS/PAPERS

- 2 ASME Presentation, June 2002 & June 2003
- 1 Journal Publication "Modern Power Systems", Spring 2002
- Over 35 Patent Disclosures with 3 Filings

AIMS Program

Market Study

Onsite Energy/ GEPS

- Market Study

Technology Concepts

GEGR

- Thermal analysis of cycle
- Advanced technology screening

GEGR/PSEC/GEIS

- Control system definition

Laboratory Evaluation

GEGR

- Integration of developed components into the new system
- Evaluation of the system in a laboratory environment

Commercial Demonstration

GEGR/ GEPS/ Site TBD

- 4000 hour demonstration of developed microturbine system

Component Development

GEGR/ Concepts NREC/ GEPS

- Component development & testing

GE Research/ Kyocera/ ORNL

- Advanced material components
- Advanced material characterization
- Ceramic testing for database

GEGR/ GEIS/ TurboGenset

- Power electronics development
- High speed alternator development

Systems Design

GEGR/ GEPS

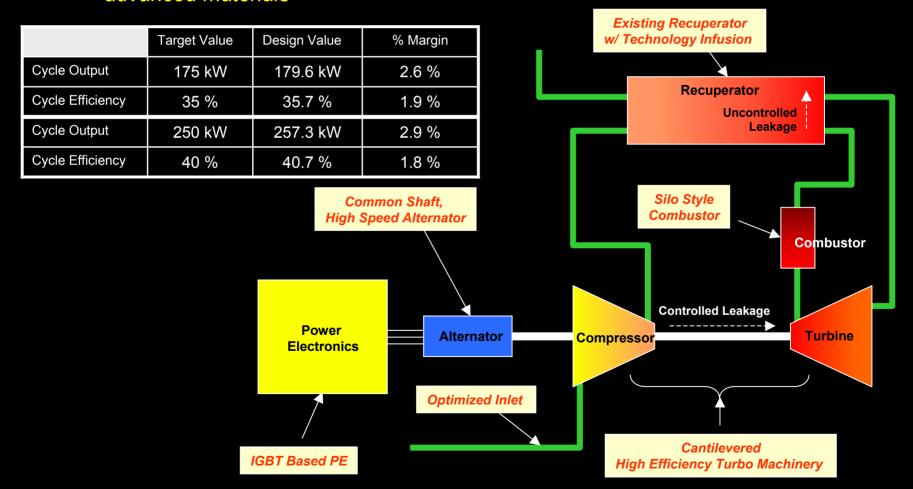
- System integration issues
- Acoustic considerations

GEGR/ GEIS/ GEPS

- Control system development

Business Plan

GEPS


- Business plan based on market analysis, product feasibility and technology maturity

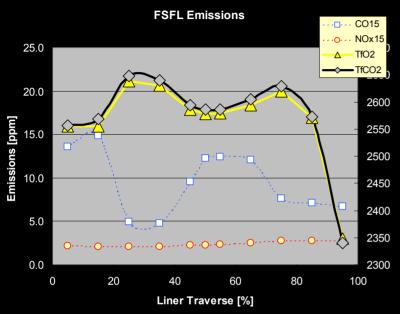
Conceptual Design

TASK FOCUS:

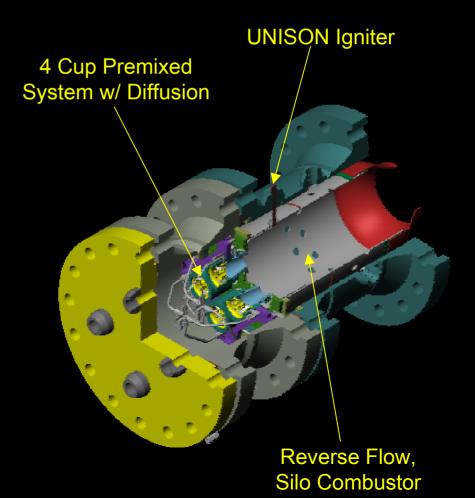
- Determine system thermal design to achieve the 40% efficiency target
- Reduce the operating temperature of the cycle to "metallic" levels
 - this process allows for proof of component technologies prior to the introduction of advanced materials



Component Design - Turbomachinery


ACTIVITIES:

- Component Design Targets Set
- 1D Analysis (Flow & Stress)
- Rotor Dynamic Analysis
- Materials Down Selection
- 1st Pass 3D Analysis (Flow & Stress)
- Analysis of Results
- Modifications/ Redesigns
- Stationary Component Design & Analysis
- Final 3D Analysis (Flow & Stress)
- Final Rotor Dynamic Analysis
- Hardware Procurement
- Experimental Evaluation
 - Integration with MT System
 - Evaluation


Component Design - Combustion

Combustor Performance:

NOx $(15\% O_2) = 3.4 \text{ ppm}$ CO $(15\% O_2) = 8.4 \text{ ppm}$

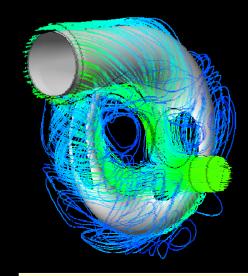
Component Design - Recuperator

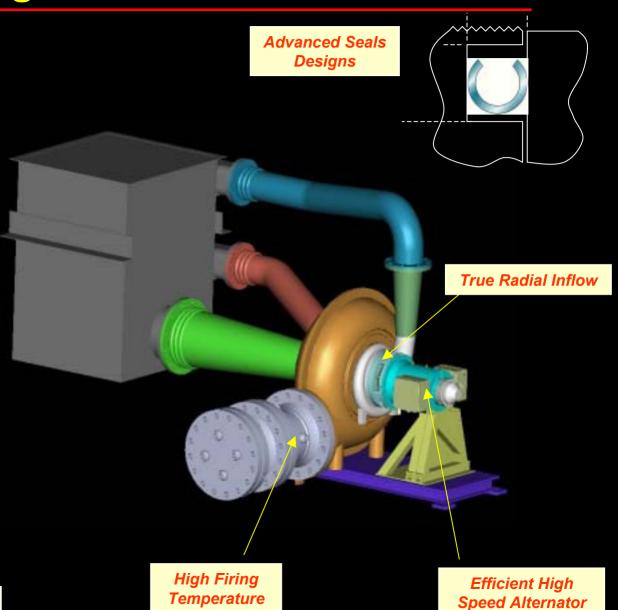
TASK FOCUS:

Infuse GE expertise of gas turbine heat transfer into existing recuperator technology to build a better system.

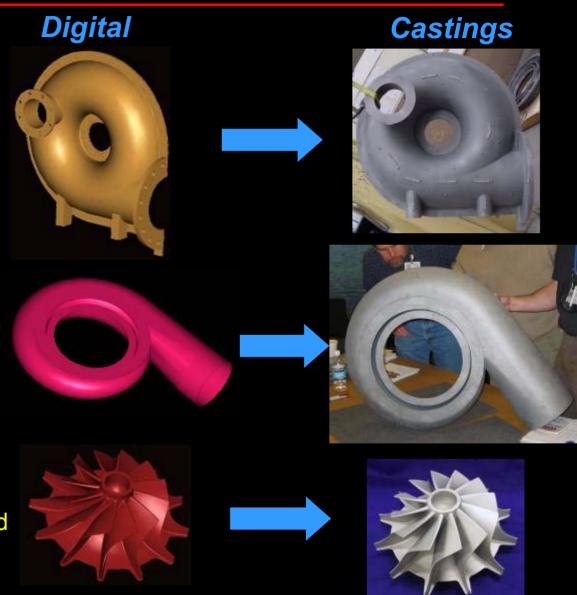
ACTIVITIES:

- Performance Design Targets Set
- Reverse Engineered Existing Recuperator Validated with Experiments
- Preliminary Sizing of Recuperator
- Potential Heat Transfer Enhancement Technologies Identified
- Design Impact of Technologies Determined
- Capable Vendors Identified
- Vendor Finalized
- Initial Hardware Procurement
- New Technology Design Incorporation
 - New Technology Sample Procurement
 - New Technology Sample Experimental Evaluation
 - New Technology Prototype Procurement
 - Experimental Evaluation



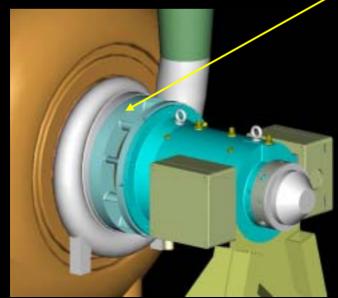

System Design

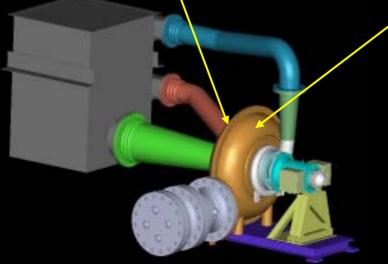
Tight Tolerance Specifications

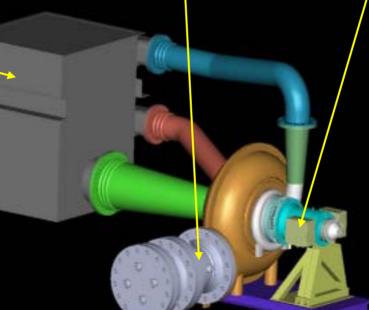


Minimizing Aero Losses

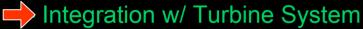
- Complete Digital Design
- Optimizations performed at the system level
- Design transferred as a 3D object for casting
- Design Input From All Parties: (chief engineers, casting vendors, machining vendors, welders, etc.)
- As-cast SLA finish and dimensions better than expected







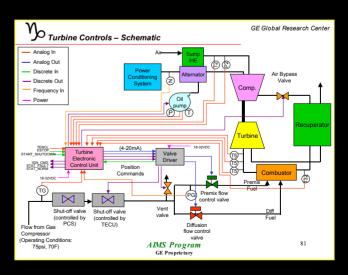
System Integration – Core



System Integration – Power Electronics

PE ACTIVITIES:

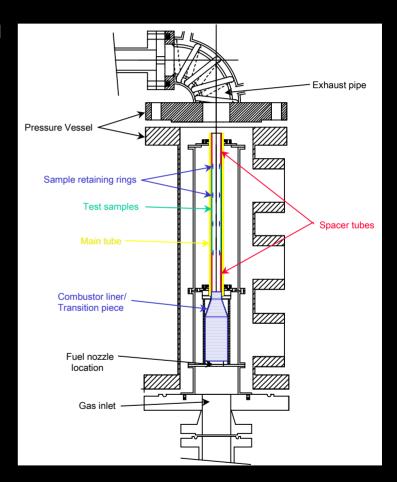
- Specifications & Topology Tradeoffs
- Generator Vendor Selection
- Power Electronic Simulations
- Auxiliary System Design
- FMEA
- Component Fabrication
- System Tests



Cabinet For Filters, Controllers
And Electrical BoP

CONTROLS ACTIVITIES:

- Control Requirements
- System Simulations
- Platform Selection
- Algorithm & Code Development
- Communication & HMI Development
- Hardware Procurement
- Test Sensors and Actuators
- Combustion Testing for Fuel Schedules
- Communication Test with Power Electronics
- Integration w/ Turbine System


Ceramic Activities

Testing in simulated microturbine environment

- Important for reliable design of ceramic components
- Viable screening tool (instead of engine testing) for material development

Exposure Tests

- Rig operating capabilities:
 - T=1200°C
 - V=120 m/s
 - P_{tot}= 9 atm ; P_{H2O}= 1 atm
- Test plan
 - T=1100°C
 - t= 1000h
 - P_{tot}= 4 atm ; P_{H2O}~ 0.4 atm
 - V~230 m/s
 - Test specimens: 100 mm x 15 mm x 2.2 mm
 - SN-282
 - EBC-coated SN-282
 - Uncoated and EBC-coated Si₃N₄

- Design, build, and test a 175 kW microturbine with an electrical efficiency of ~35%. Show the path required to reach 40%
- Large, multidisciplinary team leveraging GE technology from Industrial Systems, Aircraft Engines, and Power Systems
- Incremental increases in performance can incur exponential costs
- Cost of casting failures greater than expected (time and money)
- Vendor dependant tasks identified as a risk early in the program well founded
- Scheduled to begin testing in early 2004

